Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct 11;347(6293):569-72.
doi: 10.1038/347569a0.

Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus

Affiliations

Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus

N Parry et al. Nature. .

Abstract

Changes resulting in altered antigenic properties of viruses nearly always occur on their surface and have been attributed to the substitution of residues directly involved in binding antibody. To investigate the mechanism of antigenic variation in foot-and-mouth disease virus (FMDV), variants that escape neutralization by a monoclonal antibody have been compared crystallographically and serologically with parental virus. FMDVs form one of the four genera of the Picornaviridae. The unenveloped icosahedral shell comprises 60 copies each of four structural proteins VP1-4. Representatives from each of the genera have similar overall structure, but differences in the external features. For example, human rhinovirus has a pronounced 'canyon' that is proposed to contain the cell attachment site, whereas elements of the attachment site for FMDV, which involves the G-H loop (residues 134-160) and C-terminus (200-213) of VP1, are exposed on the surface. Moreover, this G-H loop, which is a major antigenic site of FMDV, forms a prominent, highly accessible protrusion, a feature not seen in other picornaviruses. It is this loop that is perturbed in the variant viruses that we have studied. The amino acid mutations characterizing the variants are not at positions directly involved in antibody binding, but result in far-reaching perturbations of the surface structure of the virus. Thus, this virus seems to use a novel escape mechanism whereby an induced conformational change in a major antigenic loop destroys the integrity of the epitope.

PubMed Disclaimer

Publication types

LinkOut - more resources