Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster
- PMID: 16992509
- PMCID: PMC1309314
- DOI: 10.1113/jphysiol.1976.sp011331
Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster
Abstract
Three mutations which eliminate specific types of photoreceptors in Drosophila were characterized. Of the eight photoreceptors in each facet, two mutations delete the outer six (R 1-6). The third eliminates R 7, one of the two central photoreceptors. Double mutants can be constructed in which only photoreceptor R 8 is present. The spectral sensitivities, photopigments, and behavioural properties of these mutants were investigated. R 1-6 have two sensitivity peaks, near 350 and 470 nm. These receptors contain a rhodopsin with these absorption peaks. It interconverts with a metarhodopsin that absorbs around 570 nm. R 7 is a U.V.-receptor, containing rhodopsin that absorbs around 370 nm and interconverts with a metarhodopsin which absorbs around 470 nm. R 8 is a non-adapting blue-receptor with a third type of rhodopsin. The properties of these photopigments explain the different sensitivities and spectral adaptation phenomena of the various photoreceptors. All the photoreceptors have input into phototaxis. Spectral analysis of this behaviour provides evidence for integration of the input from the different photoreceptors.
Similar articles
-
Four photoreceptor classes in the open rhabdom eye of the red palm weevil, Rynchophorus ferrugineus Olivier.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):203-13. doi: 10.1007/s00359-015-1065-9. Epub 2016 Jan 9. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016. PMID: 26749199
-
Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.J Exp Biol. 2016 Aug 1;219(Pt 15):2377-87. doi: 10.1242/jeb.136523. Epub 2016 May 31. J Exp Biol. 2016. PMID: 27247318
-
Color discrimination with broadband photoreceptors.Curr Biol. 2013 Dec 2;23(23):2375-82. doi: 10.1016/j.cub.2013.10.037. Epub 2013 Nov 21. Curr Biol. 2013. PMID: 24268411
-
Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye.Dev Dyn. 2012 Jan;241(1):40-56. doi: 10.1002/dvdy.22738. Epub 2011 Sep 19. Dev Dyn. 2012. PMID: 21932322 Review.
-
Drosophila in vision research. The Friedenwald Lecture.Invest Ophthalmol Vis Sci. 1995 Nov;36(12):2340-57. Invest Ophthalmol Vis Sci. 1995. PMID: 7591624 Review.
Cited by
-
Visual pigment processes and prolonged pupillary responses in insect photoreceptor cells.Biophys Struct Mech. 1979;5(2-3):175-85. doi: 10.1007/BF00535446. Biophys Struct Mech. 1979. PMID: 22730591
-
Building an ommatidium one cell at a time.Dev Dyn. 2012 Jan;241(1):136-49. doi: 10.1002/dvdy.23707. Dev Dyn. 2012. PMID: 22174084 Free PMC article. Review.
-
Electrophysiological study of Drosophila rhodopsin mutants.J Gen Physiol. 1986 Nov;88(5):651-73. doi: 10.1085/jgp.88.5.651. J Gen Physiol. 1986. PMID: 3097245 Free PMC article.
-
Human eye conditions: insights from the fly eye.Hum Genet. 2019 Sep;138(8-9):973-991. doi: 10.1007/s00439-018-1948-2. Epub 2018 Nov 1. Hum Genet. 2019. PMID: 30386938 Review.
-
The evolution of rhodopsins and neurotransmitter receptors.J Mol Evol. 1991 Oct;33(4):367-78. doi: 10.1007/BF02102867. J Mol Evol. 1991. PMID: 1663559
References
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases