Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Oct;17(5 Suppl 8):3-17.

Metabolism and action of fludarabine phosphate

Affiliations
  • PMID: 1699280
Review

Metabolism and action of fludarabine phosphate

W Plunkett et al. Semin Oncol. 1990 Oct.

Abstract

Fludara I.V. (fludarabine phosphate) (9-beta-D-arabinosyl-2-fluoroadenine, F-ara-A) is an adenine nucleoside analogue resistant to adenosine deaminase that shows promising therapeutic activity in the clinical treatment of lymphocytic hematologic malignancies. F-ara-A is transported into cells, where it is converted to its 5'-triphosphate (F-ara-ATP), the principal active metabolite. Deoxycytidine kinase is the enzyme responsible for the initial step of this activation metabolism. The differential transport and phosphorylation of F-ara-A and accumulation of F-ara-ATP by normal and cancer cells may constitute the metabolic basis of its positive therapeutic index. The major action of F-ara-A is the inhibition of DNA synthesis. F-ara-ATP competes with deoxyadenosine triphosphate for incorporation into the A sites of the elongating DNA strand by DNA polymerases and terminates DNA synthesis at the incorporation sites. That action is potentiated by the decrease of cellular dATP that results from inhibition of ribonucleotide reductase by F-ara-ATP. In vitro experiments demonstrated that DNA polymerase delta is able to excise the incorporated F-ara-AMP residues from DNA with its 3' to 5' exonuclease activity. The terminal incorporation of F-ara-AMP into DNA results in deletion of genetic material. That mechanism may be responsible for the observed mutagenicity of Fludara I.V., and ultimately its cytotoxic action.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources