Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;39(1):25-30.
doi: 10.1016/j.biocel.2006.07.011. Epub 2006 Aug 18.

The inhibitory pathways of pancreatic ductal bicarbonate secretion

Affiliations
Review

The inhibitory pathways of pancreatic ductal bicarbonate secretion

Péter Hegyi et al. Int J Biochem Cell Biol. 2007.

Abstract

Pancreatic duct cells secrete the HCO(3)(-) ions found in pancreatic juice. While the regulatory pathways that stimulate pancreatic ductal HCO(3)(-) secretion are well described, little is known about inhibitory pathways, apart from the fact that they exist. Nevertheless, such inhibitory pathways may be physiologically important in terms of limiting the hydrostatic pressure within the lumen of the duct, and in terms switching off pancreatic secretion after a meal. Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. Importantly, most of these inhibitors have been shown to reduce secretion in isolated pancreatic ducts, so they must act directly on the ductal epithelium. This brief review provides an overview of our current knowledge of the inhibitors, and inhibitory pathways of pancreatic ductal secretion. SIGNALLING NETWORK FACTS: Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. The inhibition of pancreatic secretion can be mediated by indirect (decreased cholinergic or increased adrenergic stimulation, decreased release of stimulatory hormones) and direct (inhibitory hormone or neurotransmitter acting on the duct cells) mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources