Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;1771(3):421-31.
doi: 10.1016/j.bbalip.2006.08.005. Epub 2006 Aug 10.

Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function

Affiliations
Review

Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function

L Ashley Cowart et al. Biochim Biophys Acta. 2007 Mar.

Abstract

Sphingolipids function as required membrane components of virtually all eukaryotic cells. Data indicate that members of the sphingolipid family of lipids, including sphingoid bases, sphingoid base phosphates, ceramides, and complex sphingolipids, serve vital functions in cell biology by both direct mechanisms (e.g., binding to G-protein coupled receptors to transduce an extracellular signal) and indirect mechanisms (e.g., facilitating correct intracellular protein transport). Because of the diverse roles these lipids play in cell biology, it is important to understand not only their biosynthetic pathways and regulation of sphingolipid synthesis, but also the mechanisms by which some sphingolipid species with specific functions are modified or converted to other sphingolipid species with alternate functions. Due to many factors including ease of culture and genetic modification, and conservation of major sphingolipid metabolic pathways, Saccharomyces cerevisiae has served as an ideal model system with which to identify enzymes of sphingolipid biosynthesis and to dissect sphingolipid function. Recent exciting developments in sphingolipid synthesis, transport, signaling, and overall biology continue to fuel vigorous investigation and inspire investigations in mammalian sphingolipid biology.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Major pathways of sphingolipid metapolism in Saccharomyces cerevisiae

Similar articles

Cited by

References

    1. El Alwani M, Wu BX, Obeid LM, Hannun YA. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther. 2006 - PubMed
    1. Lamour NF, Chalfant CE. Ceramide-1-phosphate: the “missing” link in eicosanoid biosynthesis and inflammation. Mol Interv. 2005;5:358–367. - PubMed
    1. Argraves KM, Wilkerson BA, Argraves WS, Fleming PA, Obeid LM, Drake CJ. Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem. 2004;279:50580–50590. - PubMed
    1. Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res. 2006;45:42–72. - PubMed
    1. Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes. 2005;54:591–602. - PubMed

Publication types

LinkOut - more resources