Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;62(3):772-85.
doi: 10.1111/j.1365-2958.2006.05406.x. Epub 2006 Sep 25.

The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence

Affiliations
Free article

The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence

Yuji Yamamoto et al. Mol Microbiol. 2006 Nov.
Free article

Abstract

Numerous Streptococcaceae produce an H2O-forming NADH oxidase, Nox-2, which has been generally implicated in aerobic survival. We examined the roles of Nox-2 in Group B Streptococcus (GBS), a leading agent of neonatal infections. While nox2 inactivation caused an aerobic growth arrest, no improvement was seen by addition of antioxidants to cultures, suggesting that this defect was not due to accumulation of toxic oxygen species. Using several approaches, we show that the observed inability of the nox2 mutant to grow aerobically is mainly due to an underlying defect in fatty acid (FA) biosynthesis: (i) the nox2 aerobic growth defect is fully and rapidly complemented by adding oleic acid to culture medium, and (ii) direct assimilation of this unsaturated FA in both wild type (WT) and nox2 GBS membranes is demonstrated and correlated with mutant growth rescue. We propose that NAD+ depletion in the nox2 mutant results in reduced acetyl-CoA production, which perturbs FA biosynthesis and hence blocks growth in aerobiosis. The nox2 aerobic growth defect was also complemented when GBS respiration metabolism was activated by exogenous haem and menaquinone. The membrane NADH oxidase activity generated by the functional respiratory chain thus compensates the cytoplasmic NADH oxidase deficiency. The nox2 mutant was attenuated for virulence, as assessed in lung, intraperitoneal and intravenous murine infection models. As the nox2 defect seems only to affect aerobic growth of GBS, its reduced virulence supports the suggestion that aerobic conditions and NADH oxidase activities are relevant to the GBS infection process.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources