Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul:426:1-18.
doi: 10.1113/jphysiol.1990.sp018124.

Halothane increases Ca2+ efflux via Ca2+ channels of sarcoplasmic reticulum in chemically skinned rat myocardium

Affiliations

Halothane increases Ca2+ efflux via Ca2+ channels of sarcoplasmic reticulum in chemically skinned rat myocardium

J S Herland et al. J Physiol. 1990 Jul.

Abstract

1. A method has been developed to study Ca2+ fluxes across the sarcoplasmic reticulum (SR) of chemically (saponin) skinned myocardium without interference from the SR Ca2+ pump. 2. Exposure of rat cardiac trabeculae to a solution containing 50 micrograms/ml saponin for 10 min or longer caused an SR Ca2+ efflux which was not blocked by Ruthenium Red (RRed) and did not require the presence of nucleotides. 3. Exposure of the saponin-treated cardiac preparation to 11 mM-AMP, when the SR Ca2+ pump was not active, enhanced Ca2+ release from the SR by a mechanism which was blocked by 10 microM-RRed. 4. The amount of Ca2+ loaded by the 10 min saponin-treated trabeculae was maintained constant for at least 3 min when the preparations were transferred to low [Ca2+] solutions (0.1 mM-EGTA; pCa greater than 7.5) containing ATP. This indicated that the Ca2+ pump can efficiently recycle Ca2+ lost from the SR under these conditions. 5. Halothane (0.47 and 1.89 mM) reversibly increased the rate of Ca2+ release from the SR regardless of whether or not the SR Ca2+ pump was active. This effect was more marked at 1.89 mM than at 0.47 mM. RRed (10 microM) completely blocked the Ca2+ release induced by both concentrations of halothane. 6. The presence of nucleotide (11 mM-AMP) did not affect the halothane-induced Ca2+ release when the Ca2+ pump was inactive. 7. Exposure of cardiac preparations to solutions containing more than 5 mM-halothane irreversibly damaged the ability of the SR to load Ca2+. 8. The results suggest that at lower doses (0.47 and 1.89 mM) halothane specifically and reversibly stimulates Ca2+ efflux via the RRed-sensitive SR Ca2(+)-release channel by a mechanism which does not require the presence of nucleotides or relatively high [Ca2+]. The results also suggest that AMP and halothane act independently and non-synergistically to increase Ca2+ efflux through the same SR Ca2(+)-release channel. At higher doses (greater than 5 mM) halothane irreversibly damages the SR membrane, presumably by disrupting the lipid bilayer.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anesth Analg. 1982 May;61(5):403-9 - PubMed
    1. Anesthesiology. 1983 Jun;58(6):556-61 - PubMed
    1. J Physiol. 1977 Sep;270(3):627-52 - PubMed
    1. J Physiol. 1978 Feb;275:241-62 - PubMed
    1. Physiol Rev. 1977 Jan;57(1):71-108 - PubMed

Publication types

LinkOut - more resources