Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814
- PMID: 17001493
- DOI: 10.1007/s00359-006-0171-0
Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814
Abstract
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (lambda(max)) at 497 nm and three spectrally distinct cone types with lambda(max) values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.
Similar articles
-
Vision in elasmobranchs and their relatives: 21st century advances.J Fish Biol. 2012 Apr;80(5):2024-54. doi: 10.1111/j.1095-8649.2012.03253.x. Epub 2012 Mar 22. J Fish Biol. 2012. PMID: 22497415 Review.
-
Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch.J Exp Biol. 2004 Dec;207(Pt 26):4587-94. doi: 10.1242/jeb.01314. J Exp Biol. 2004. PMID: 15579554
-
Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.).J Comp Physiol A. 2000 Apr;186(4):375-87. doi: 10.1007/s003590050437. J Comp Physiol A. 2000. PMID: 10798725
-
Vision in the peafowl (Aves: Pavo cristatus).J Exp Biol. 2002 Dec;205(Pt 24):3925-35. doi: 10.1242/jeb.205.24.3925. J Exp Biol. 2002. PMID: 12432014
-
The visual ecology of avian photoreceptors.Prog Retin Eye Res. 2001 Sep;20(5):675-703. doi: 10.1016/s1350-9462(01)00009-x. Prog Retin Eye Res. 2001. PMID: 11470455 Review.
Cited by
-
Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks.Mol Biol Evol. 2025 Mar 5;42(3):msaf043. doi: 10.1093/molbev/msaf043. Mol Biol Evol. 2025. PMID: 39937658 Free PMC article.
-
Microspectrophotometric evidence for cone monochromacy in sharks.Naturwissenschaften. 2011 Mar;98(3):193-201. doi: 10.1007/s00114-010-0758-8. Epub 2011 Jan 7. Naturwissenschaften. 2011. PMID: 21212930
-
What has driven the evolution of multiple cone classes in visual systems: object contrast enhancement or light flicker elimination?BMC Biol. 2013 Jul 4;11:77. doi: 10.1186/1741-7007-11-77. BMC Biol. 2013. PMID: 23826998 Free PMC article.
-
De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax.PLoS One. 2018 Dec 31;13(12):e0209767. doi: 10.1371/journal.pone.0209767. eCollection 2018. PLoS One. 2018. PMID: 30596723 Free PMC article.
-
Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro).J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Jan;207(1):43-58. doi: 10.1007/s00359-020-01454-2. Epub 2020 Dec 2. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021. PMID: 33263813 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources