Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jan;80(1):167-74.
doi: 10.1002/jbm.a.30877.

Hemostatic properties of glucosamine-based materials

Affiliations
Comparative Study

Hemostatic properties of glucosamine-based materials

Thomas H Fischer et al. J Biomed Mater Res A. 2007 Jan.

Abstract

Glucosamine- and N-acetyl glucosamine-containing polymers are being used in an increasing number of biomedical applications, including in products for surface (topical) hemostasis. The studies presented here investigate the relationship between the structure (conformation) and function (activation of hemostasis) of glucosamine-based materials. Several polymer systems were studied, including fibers isolated from a microalgal source containing poly-N-acetyl glucosamine polymers that are organized in a parallel, hydrogen-bonded tertiary structure and can be chemically modified to an antiparallel orientation; and gel formulation derivatives of the microalgal fibers consisting of partially deacetylated (F2 gel) and fully deacetylated (F3 gel) polymers. Comparison of the properties of the poly-N-acetyl glucosamine fiber-derived materials with chitin, chitosan, and commercial chitosan-based products are presented. Several studies were performed with the glucosamine-based materials, including (1) an analysis of the ability of materials to activate platelets and turnover of the intrinsic coagulation cascade, (2) an examination of the viscoelastic properties of mixtures of platelet-rich plasma and the glucosamine-based materials via thromboelastography, and (3) scanning electron microscopic studies to examine the morphology of the glucosamine-based materials. The results presented demonstrate that hemostatic responses to the glucosamine-based materials studied are highly dependent on their chemical nature and tertiary/quaternary structure. The unique natural microalgal fibers were found to have strongly prohemostatic activity compared to the other materials studied.

PubMed Disclaimer

Publication types

LinkOut - more resources