Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct;2(10):582-93.
doi: 10.1038/ncpneph0283.

Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension

Affiliations
Review

Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension

Nosratola D Vaziri et al. Nat Clin Pract Nephrol. 2006 Oct.

Abstract

Animal studies have shown that oxidative stress and renal tubulointerstitial inflammation are associated with, and have major roles in, the pathogenesis of hypertension. This view is supported by the observations that alleviation of oxidative stress and renal tubulointerstitial inflammation reduce arterial pressure in animal models. Conversely, hypertension has been shown to cause oxidative stress and inflammation in renal and cardiovascular tissues in experimental animals. Taken together, these observations indicate that oxidative stress, inflammation and arterial hypertension participate in a self-perpetuating cycle which, if not interrupted, can lead to progressive cardiovascular disease and renal complications. These events usually occur in an insidious and asymptomatic manner over an extended period following the onset of hypertension. Severe target organ injury can, however, occasionally occur precipitously in the course of malignant or accelerated hypertension. Given the high degree of heterogeneity of hypertensive disorders, the factor(s) initiating the vicious cycle described vary considerably in different forms of hypertension. For instance, oxidative stress in the kidney and vascular tissue is the primary mediator in the pathogenesis of angiotensin-induced, and perhaps lead-induced, hypertension. By contrast, increased arterial pressure is probably the initiating trigger in salt-sensitive hypertension. Although the initiating factor might vary between hypertensive disorders, according to the proposed model, the three components of the cycle eventually coalesce in all forms of hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources