Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 10;3(4):141-7.
doi: 10.7150/ijms.3.141.

A possible link between exercise-training adaptation and dehydroepiandrosterone sulfate- an oldest-old female study

Affiliations

A possible link between exercise-training adaptation and dehydroepiandrosterone sulfate- an oldest-old female study

Yi-Jen Huang et al. Int J Med Sci. .

Abstract

The purpose of this study was to determine the association between the level of salivary dehydroepiandrosterone sulfate (DHEA-S) and the magnitude of adaptation to exercise training in insulin sensitivity for aged females. A group of 16 females, aged 80-93 years old, was divided into 2 groups according to their baseline DHEA-S levels: Lower Halves (N = 8) and Upper Halves (N = 8), and participated in a 4-month exercise intervention trial. Insulin response with an oral glucose tolerance test (OGTT), cholesterol, blood pressure (BP), motor performance, and DHEA-S were determined at baseline and 4 months after the training program. Glucose tolerance and body mass index (BMI) remained unchanged with training for both groups. Insulin, fasted cholesterol, diastolic blood pressure, reaction time, and locomotive function were significantly lowered by training only in the Upper Halves group. Changes in the area under curve of insulin (IAUC) were negatively correlated with the baseline DHEA-S level (R= - 0.60, P < 0.05). The current study provides the first evidence that oldest-old subjects with low DHEA-S level appear to be poor responders to exercise-training adaptations.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: The authors have declared that no conflict of interest exists.

Figures

Figure 1
Figure 1
Glucose tolerance and insulin response in Lower Halves group of DHEA-S before (Pre) and after 4-month exercise training (Post). Glucose levels (A) and insulin level (B) were measured under 75 grams of oral glucose challenge. Glucose tolerance and insulin response were not changed by exercise training in the oldest-old subjects with lower DHEA-S level, suggesting insulin sensitivity was not improved by exercise training.
Figure 1
Figure 1
Glucose tolerance and insulin response in Lower Halves group of DHEA-S before (Pre) and after 4-month exercise training (Post). Glucose levels (A) and insulin level (B) were measured under 75 grams of oral glucose challenge. Glucose tolerance and insulin response were not changed by exercise training in the oldest-old subjects with lower DHEA-S level, suggesting insulin sensitivity was not improved by exercise training.
Figure 2
Figure 2
Glucose tolerance and insulin response in Upper Halves group before (Pre) and after 4-month exercise training (Post). Glucose (A) and insulin (B) levels were measured following a 75 gram bolus of oral glucose challenge. * significant difference from Pre (P < 0.05). While glucose tolerance remained unchanged, insulin response was lowered by exercise training in the subjects with higher DHEA-S level, suggesting that insulin sensitivity was improved in the oldest-old subjects with higher DHEA-S.
Figure 2
Figure 2
Glucose tolerance and insulin response in Upper Halves group before (Pre) and after 4-month exercise training (Post). Glucose (A) and insulin (B) levels were measured following a 75 gram bolus of oral glucose challenge. * significant difference from Pre (P < 0.05). While glucose tolerance remained unchanged, insulin response was lowered by exercise training in the subjects with higher DHEA-S level, suggesting that insulin sensitivity was improved in the oldest-old subjects with higher DHEA-S.
Figure 3
Figure 3
Relationship between baseline DHEA-S level and changes in the area under curve for glucose (GAUC change) and insulin (IAUC change) in the oldest-old subjects. No correlation between GAUC change and baseline DHEA-S level was found (3A); IAUC change was negatively correlated with baseline DHEA-S level (3B) (R = - 0.60, P < 0.05). This result indicates that the magnitude of exercise training effect on insulin sensitivity is associated with DHEA-S level.
Figure 3
Figure 3
Relationship between baseline DHEA-S level and changes in the area under curve for glucose (GAUC change) and insulin (IAUC change) in the oldest-old subjects. No correlation between GAUC change and baseline DHEA-S level was found (3A); IAUC change was negatively correlated with baseline DHEA-S level (3B) (R = - 0.60, P < 0.05). This result indicates that the magnitude of exercise training effect on insulin sensitivity is associated with DHEA-S level.

Similar articles

Cited by

References

    1. Facchini FS, Hua N, Abbasi F. et al. Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab. 2001;86:3574–8. - PubMed
    1. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607. - PubMed
    1. Davidson MB. The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism. 1979;28:688–705. - PubMed
    1. Paolisso G, Rizzo MR, Mazziotti G. et al. Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Physiol. 1998;275:E294–9. - PubMed
    1. Ivy JL, Zderic TW, Fogt DL. Prevention and treatment of non-insulin-dependent diabetes mellitus. Exerc Sport Sci Rev. 1999;27:1–35. - PubMed