Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct;87(20):7953-7.
doi: 10.1073/pnas.87.20.7953.

Rare maternal mRNAs code for regulatory proteins that control lineage-specific gene expression in the sea urchin embryo

Affiliations

Rare maternal mRNAs code for regulatory proteins that control lineage-specific gene expression in the sea urchin embryo

A E Cutting et al. Proc Natl Acad Sci U S A. 1990 Oct.

Erratum in

  • Proc Natl Acad Sci U S A 1990 Dec;87(24):10068

Abstract

The prevalence of mRNAs coding for the sea urchin embryo regulatory factors P3A1 and P3A2 was measured by single-strand probe excess solution hybridization. P3A1 and P3A2 are not homologous proteins, though they both bind specifically to a particular cis-regulatory sequence. Interaction at this target site is known to be required for lineage-specific expression of an aboral ectoderm-specific gene and probably for several other genes as well. Genome blot hybridizations show that both factors are encoded by single-copy genes. Maternal mRNAs for both factors are present at less than 10(3) molecules per egg, which places them in the rare mRNA class. During development to the mesenchyme blastula stage, the amount of P3A1 mRNA (per embryo) increases severalfold while that of P3A2 remains approximately constant. Specification of the aboral ectoderm founder cells and of their initial patterns of gene expression must occur during early to mid-cleavage stage. Therefore, the regulatory proteins needed for this process must be produced by this stage. We show that the quantities of the P3A proteins that can be synthesized from the numbers of mRNA molecules present in the large blastomeres of the early embryo are sufficient to be functional, because these proteins will be accumulated in the nuclei. Thus maternal P3A1 or P3A2 proteins asre not required, nor were these detected in earlier studies. Furthermore, differential spatial (as well as temporal) distribution of both of these newly synthesized factor species could result from the unequal cleavage pattern utilized in the sea urchin egg.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Development. 1989 Aug;106(4):641-7 - PubMed
    1. J Mol Biol. 1983 Jun 25;167(2):361-89 - PubMed
    1. Methods Enzymol. 1987;152:633-48 - PubMed
    1. Anal Biochem. 1983 Jul 1;132(1):6-13 - PubMed
    1. J Mol Biol. 1984 Jan 15;172(2):149-76 - PubMed

Publication types

LinkOut - more resources