Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Nov;12(11):655-60.
doi: 10.1093/molehr/gal080. Epub 2006 Sep 27.

Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells

Affiliations
Comparative Study

Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells

C Tatone et al. Mol Hum Reprod. 2006 Nov.

Abstract

Limited knowledge exists about changes in follicle quality associated with age. The aim of this work was to investigate whether ageing may cause oxidative stress-mediated alterations in human granulosa cells (GCs) from periovulatory follicles. GCs employed in this study were obtained from follicular aspirates of 20 younger women (range 27-32 years) and 20 older women (range 38-41 years) undergoing an IVF treatment. Results obtained from comparative RT-PCR analysis revealed that the mean relative levels of mRNAs coding for superoxide dismutases, Cu, ZnSOD (SOD1), MnSOD (SOD2) and catalase were significantly decreased in women > or =38 years (P < 0.05, Student's t-test). These changes were associated with a reduced expression of SOD1, SOD2 and catalase at the protein level. When examined at an ultrastructural level, most of the GCs from this group showed defective mitochondria and fewer lipid droplets than those observed in the younger group. These results indicate that GCs from older patients suffer from age-dependent oxidative stress injury and are taken as an evidence for reduced defence against reactive oxygen species (ROS) in GCs during reproductive ageing.

PubMed Disclaimer

Publication types

MeSH terms