Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;17(11):3020-7.
doi: 10.1681/ASN.2006060676. Epub 2006 Sep 27.

Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice

Affiliations

Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice

Dimitra Gkika et al. J Am Soc Nephrol. 2006 Nov.

Abstract

The epithelial Ca(2+) channel TRPV5 facilitates apical Ca(2+) entry during active Ca(2+) reabsorption in the distal convoluted tubule. In this process, cytosolic Ca(2+) remains at low nontoxic concentrations because the Ca(2+) influx is buffered rapidly by calbindin-D(28K). Subsequently, Ca(2+) that is bound to calbindin-D(28K) is shuttled toward the basolateral Ca(2+) extrusion systems. For addressing the in vivo role of TRPV5 and calbindin-D(28K) in the maintenance of the Ca(2+) balance, single- and double-knockout mice of TRPV5 and calbindin-D(28K) (TRPV5(-/-), calbindin-D(28K)(-/-), and TRPV5(-/-)/calbindin-D(28K)(-/-)) were characterized. These mice strains were fed two Ca(2+) diets (0.02 and 2% wt/wt) to investigate the influence of dietary Ca(2+) content on the Ca(2+) balance. Urine analysis indicated that TRPV5(-/-)/calbindin-D(28K)(-/-) mice exhibit on both diets hypercalciuria compared with wild-type mice. Ca(2+) excretion in TRPV5(-/-)/calbindin-D(28K)(-/-) mice was not significantly different from TRPV5(-/-) mice, whereas calbindin-D(28K)(-/-) mice did not show hypercalciuria. The similarity between TRPV5(-/-)/calbindin-D(28K)(-/-) and TRPV5(-/-) mice was supported further by an equivalent increase in renal calbindin-D(9K) expression and in intestinal Ca(2+) hyperabsorption as a result of upregulation of calbindin-D(9K) and TRPV6 expression in the duodenum. Elevated serum parathyroid hormone and 1,25-dihydroxyvitamin D(3) levels accompanied the enhanced expression of the Ca(2+) transporters. Intestinal Ca(2+) absorption and expression of calbindin-D(9K) and TRPV6, as well as serum parameters of the calbindin-D(28K)(-/-) mice, did not differ from those of wild-type mice. These results underline the gatekeeper function of TRPV5 being the rate-limiting step in active Ca(2+) reabsorption, unlike calbindin-D(28K), which possibly is compensated by calbindin-D(9K).

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types