Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;20(1):58-68.
doi: 10.1002/nbm.1094.

In-depth study of the electromagnetics of ultrahigh-field MRI

Affiliations

In-depth study of the electromagnetics of ultrahigh-field MRI

Tamer S Ibrahim et al. NMR Biomed. 2007 Feb.

Abstract

In this work, numerical and experimental studies of the transverse electromagnetic (TEM) resonator modes at ultrahigh-field (UHF) MRI are performed using an in-house finite difference time domain package at 340 MHz and using an 8 T whole-body MRI system. The simulations utilized anatomically detailed human head mesh and a spherical head-sized phantom, while the experiments included an electromagnetically equivalent (to simulations) phantom and in vivo human head studies. An in-depth look at the homogeneity of the transmit-and-receive fields and local and global polarization of the electromagnetic waves inside the cavity of the head coil, and also the current distribution obtained on the resonator elements, is provided for several coil modes when the coil is empty and loaded. Based on the numerical and experimental results, which are in excellent agreement, an electromagnetic characterization of loading radio-frequency (RF) head coils during a UHF MRI experiment is provided. The possibility of using the aforementioned modes for specific types of imaging application is briefly reviewed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources