Purple membrane vesicles: morphology and proton translocation
- PMID: 17009
- DOI: 10.1007/BF01869523
Purple membrane vesicles: morphology and proton translocation
Abstract
Purple membrane vesicles prepared by different techniques differ widely in their morphology and ability to establish a proton gradient in the light. The procedures used to prepare active vesicles do not completely dissociate the purple membrane and thus preserve a preferential orientation of the protein, while most of the lipid is exchanged for added lipid. Responses to illumination are largely determined by the size of the vesicles and the degree to which bacteriorhodopsin is preferentially oriented. Any attempt to compare the interaction of different lipids with bacteriorhodopsin by measuring the pH response must take these factors into account. With an improved technique we have obtained vesicles of rather uniform size and bacteriorhodopsin orientation, which accumulate protons with an initial rate of 160 ng H+ sec-1 mg-1 protein at light intensities of 10(6) erg cm-2 sec-1. The kinetics of the process are complex and at present insufficiently understood.
Similar articles
-
Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim Biophys Acta. 1976 Sep 13;440(3):545-56. doi: 10.1016/0005-2728(76)90041-4. Biochim Biophys Acta. 1976. PMID: 963044
-
Bacteriorhodopsin and the purple membrane of halobacteria.Biochim Biophys Acta. 1979 Mar 14;505(3-4):215-78. doi: 10.1016/0304-4173(79)90006-5. Biochim Biophys Acta. 1979. PMID: 35226 Review. No abstract available.
-
Bacteriorhodopsin vesicles. An outline of the requirements for light-dependent H+ pumping.Biochim Biophys Acta. 1978 Oct 19;513(1):66-77. doi: 10.1016/0005-2736(78)90112-8. Biochim Biophys Acta. 1978. PMID: 31174
-
Compartmental analysis of light-induced proton movement in reconstituted bacteriorhodopsin vesicles.Biochemistry. 1982 Jul 20;21(15):3643-50. doi: 10.1021/bi00258a018. Biochemistry. 1982. PMID: 7115689
-
The purple membrane from Halobacterium halobium.Annu Rev Biophys Bioeng. 1977;6:87-109. doi: 10.1146/annurev.bb.06.060177.000511. Annu Rev Biophys Bioeng. 1977. PMID: 326156 Review. No abstract available.
Cited by
-
Proton transport by bacteriorhodopsin through an interface film.J Membr Biol. 1977 Sep 14;36(2-3):137-58. doi: 10.1007/BF01868148. J Membr Biol. 1977. PMID: 561851
-
Peptide-chain secondary structure of bacteriorhodopsin.Biophys J. 1983 Jul;43(1):81-9. doi: 10.1016/S0006-3495(83)84326-4. Biophys J. 1983. PMID: 6882864 Free PMC article.
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.
-
Proton transfer reactions in native and deionized bacteriorhodopsin upon delipidation and monomerization.Biophys J. 2003 Jul;85(1):426-34. doi: 10.1016/S0006-3495(03)74487-7. Biophys J. 2003. PMID: 12829497 Free PMC article.
-
Effect of membrane potential on the conformation of bacteriorhodopsin reconstituted in lipid vesicles.Biophys J. 1988 Oct;54(4):747-50. doi: 10.1016/S0006-3495(88)83011-X. Biophys J. 1988. PMID: 19431732 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources