Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;27(4):363-9.

VEGF induces phosphorylation of STAT3 through binding VEGFR2 in ovarian carcinoma cells in vitro

Affiliations
  • PMID: 17009627

VEGF induces phosphorylation of STAT3 through binding VEGFR2 in ovarian carcinoma cells in vitro

W Lu et al. Eur J Gynaecol Oncol. 2006.

Erratum in

  • Eur J Gynaecol Oncol. 2006;27(6):544

Abstract

VEGF plays a key role in ovarian carcinoma. Recent studies have shown that expressions of VEGF and its receptors were correlated with signal tranducer phosphorylation and activators of transcription 3(p-STAT3) in ovarian carcinoma. The aim of this study was to investigate the effects of STAT3 phosphorylation on VEGF signaling pathways in ovarian carcinoma cells. We selected an ovarian carcinoma cell line Caov-3 as a target cell that co-expressed VEGFR2 and p-STAT3. We detected expressions of p-STAT3 in Caov-3 induced by VEGF with different concentrations and for different effect times by immunocytochemistry and Western Blot. A concentration of 50 ng/ml VEGF was enough to increase phosphorylation of STAT3, and at 30 min, the p-STAT3 level reached the peak and showed nuclear translocation of p-STAT3 from the cytoplasm to the nucleus. These effects could be overcome by a small peptide (ATWLPPR) specific for VEGFR2. Taken together, VEGF-induced phosphorylation and nuclear translocation of STAT3 and ATWLPPR could effectively block the VEGF effects, suggesting that phosphorylation of STAT3 participates in VEGF signal transduction via VEGFR2 in ovarian carcinoma cells.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources