Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance
- PMID: 17011503
- PMCID: PMC1821092
- DOI: 10.1016/j.cmet.2006.09.003
Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance
Abstract
PPARgamma is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARgamma in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARgamma coactivators and inhibit coexpressed wild-type receptor. Expression of PPARgamma target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARgamma action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators.
Figures
References
-
- Adams M., Reginato M.J., Shao D., Lazar M.A., Chatterjee V.K.K. Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J. Biol. Chem. 1997;272:5128–5132. - PubMed
-
- Agarwal A.K., Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 2002;87:408–411. - PubMed
-
- Agostini M., Gurnell M., Savage D.B., Wood E.M., Smith A.G., Rajanayagam O., Garnes K.T., Levinson S.H., Xu H.E., Schwabe J.W. Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma. Endocrinology. 2004;145:1527–1538. - PubMed
-
- Akiyama T.E., Baumann C.T., Sakai S., Hager G.L., Gonzalez F.J. Selective intranuclear redistribution of PPAR isoforms by RXR alpha. Mol. Endocrinol. 2002;16:707–721. - PubMed
-
- Al-Shali K., Cao H., Knoers N., Hermus A.R., Tack C.J., Hegele R.A. A single-base mutation in the peroxisome proliferator-activated receptor gamma4 promoter associated with altered in vitro expression and partial lipodystrophy. J. Clin. Endocrinol. Metab. 2004;89:5655–5660. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
