Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 5;282(1):615-24.
doi: 10.1074/jbc.M608300200. Epub 2006 Sep 29.

Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations

Affiliations
Free article

Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations

Alejandro Godoy et al. J Biol Chem. .
Free article

Abstract

We characterized the human Na(+)-ascorbic acid transporter SVCT2 and developed a basic model for the transport cycle that challenges the current view that it functions as a Na(+)-dependent transporter. The properties of SVCT2 are modulated by Ca(2+)/Mg(2+) and a reciprocal functional interaction between Na(+) and ascorbic acid that defines the substrate binding order and the transport stoichiometry. Na(+) increased the ascorbic acid transport rate in a cooperative manner, decreasing the transport K(m) without affecting the V(max), thus converting a low affinity form of the transporter into a high affinity transporter. Inversely, ascorbic acid affected in a bimodal and concentration-dependent manner the Na(+) cooperativity, with absence of cooperativity at low and high ascorbic acid concentrations. Our data are consistent with a transport cycle characterized by a Na(+):ascorbic acid stoichiometry of 2:1 and a substrate binding order of the type Na(+):ascorbic acid:Na(+). However, SVCT2 is not electrogenic. SVCT2 showed an absolute requirement for Ca(2+)/Mg(2+) for function, with both cations switching the transporter from an inactive into an active conformation by increasing the transport V(max) without affecting the transport K(m) or the Na(+) cooperativity. Our data indicate that SVCT2 may switch between a number of states with characteristic properties, including an inactive conformation in the absence of Ca(2+)/Mg(2+). At least three active states can be envisioned, including a low affinity conformation at Na(+) concentrations below 20 mM and two high affinity conformations at elevated Na(+) concentrations whose Na(+) cooperativity is modulated by ascorbic acid. Thus, SVCT2 is a Ca(2+)/Mg(2+)-dependent transporter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources