Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:47:629-56.
doi: 10.1146/annurev.pharmtox.47.120505.105110.

Targeting antioxidants to mitochondria by conjugation to lipophilic cations

Affiliations
Review

Targeting antioxidants to mitochondria by conjugation to lipophilic cations

Michael P Murphy et al. Annu Rev Pharmacol Toxicol. 2007.

Abstract

Mitochondrial oxidative damage contributes to a range of degenerative diseases. Consequently, the selective inhibition of mitochondrial oxidative damage is a promising therapeutic strategy. One way to do this is to invent antioxidants that are selectively accumulated into mitochondria within patients. Such mitochondria-targeted antioxidants have been developed by conjugating the lipophilic triphenylphosphonium cation to an antioxidant moiety, such as ubiquinol or alpha-tocopherol. These compounds pass easily through all biological membranes, including the blood-brain barrier, and into muscle cells and thus reach those tissues most affected by mitochondrial oxidative damage. Furthermore, because of their positive charge they are accumulated several-hundredfold within mitochondria driven by the membrane potential, enhancing the protection of mitochondria from oxidative damage. These compounds protect mitochondria from damage following oral delivery and may therefore form the basis for mitochondria-protective therapies. Here we review the background and work to date on this class of mitochondria-targeted antioxidants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources