Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep 22;241(1302):220-8.
doi: 10.1098/rspb.1990.0089.

Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times

Affiliations
Comparative Study

Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times

K L Magleby et al. Proc Biol Sci. .

Abstract

Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (or gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels. Analysis of the durations of the open and closed intervals and of the correlations among the interval durations can give insight into the gating mechanism. Although it is well known that the correlation information can be essential to distinguish among possible gating mechanisms, it has been difficult to use this information because it has not been possible to correct the predicted correlations for the distortion of the single-channel data because of filtering and noise. To overcome this limitation we present a method based on a comparison of simulated and experimental two-dimensional dwell-time distributions constructed by analysing simulated and experimental single-channel currents in an identical manner. The simulated currents incorporate the true effects of filtering and noise, the two-dimensional distributions retain the correlation information, and the identical analysis allows direct maximum-likelihood comparison of the simulated and experimental two-dimensional distributions. We show that the two-dimensional simulation method has a greatly increased ability to distinguish among models, compared with methods that use one-dimensional distributions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources