Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 15;177(8):5059-67.
doi: 10.4049/jimmunol.177.8.5059.

Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation

Affiliations

Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation

Annie Bibeau-Poirier et al. J Immunol. .

Erratum in

  • J Immunol. 2006 Dec 15;177(12):8878-9

Abstract

Activation of the innate arm of the immune system following pathogen infection relies on the recruitment of latent transcription factors involved in the induction of a subset of genes responsible for viral clearance. One of these transcription factors, IFN regulatory factor 3 (IRF-3), is targeted for proteosomal degradation following virus infection. However, the molecular mechanisms involved in this process are still unknown. In this study, we show that polyubiquitination of IRF-3 increases in response to Sendai virus infection. Using an E1 temperature-sensitive cell line, we demonstrate that polyubiquitination is required for the observed degradation of IRF-3. Inactivation of NEDD8-activating E1 enzyme also results in stabilization of IRF-3 suggesting the NEDDylation also plays a role in IRF-3 degradation following Sendai virus infection. In agreement with this observation, IRF-3 is recruited to Cullin1 following virus infection and overexpression of a dominant-negative mutant of Cullin1 significantly inhibits the degradation of IRF-3 observed in infected cells. We also asked whether the C-terminal cluster of phosphoacceptor sites of IRF-3 could serve as a destabilization signal and we therefore measured the half-life of C-terminal phosphomimetic IRF-3 mutants. Interestingly, we found them to be short-lived in contrast to wild-type IRF-3. In addition, no degradation of IRF-3 was observed in TBK1(-/-) mouse embryonic fibroblasts. All together, these data demonstrate that virus infection stimulates a host cell signaling pathway that modulates the expression level of IRF-3 through its C-terminal phosphorylation by the IkappaB kinase-related kinases followed by its polyubiquitination, which is mediated in part by a Cullin-based ubiquitin ligase.

PubMed Disclaimer

Publication types

LinkOut - more resources