Design of a combinatorial DNA microarray for protein-DNA interaction studies
- PMID: 17018151
- PMCID: PMC1635571
- DOI: 10.1186/1471-2105-7-429
Design of a combinatorial DNA microarray for protein-DNA interaction studies
Abstract
Background: Discovery of precise specificity of transcription factors is an important step on the way to understanding the complex mechanisms of gene regulation in eukaryotes. Recently, double-stranded protein-binding microarrays were developed as a potentially scalable approach to tackle transcription factor binding site identification.
Results: Here we present an algorithmic approach to experimental design of a microarray that allows for testing full specificity of a transcription factor binding to all possible DNA binding sites of a given length, with optimally efficient use of the array. This design is universal, works for any factor that binds a sequence motif and is not species-specific. Furthermore, simulation results show that data produced with the designed arrays is easier to analyze and would result in more precise identification of binding sites.
Conclusion: In this study, we present a design of a double stranded DNA microarray for protein-DNA interaction studies and show that our algorithm allows optimally efficient use of the arrays for this purpose. We believe such a design will prove useful for transcription factor binding site identification and other biological problems.
Figures





Similar articles
-
An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.Nat Biotechnol. 2002 Aug;20(8):835-9. doi: 10.1038/nbt717. Epub 2002 Jul 8. Nat Biotechnol. 2002. PMID: 12101404
-
Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy.BMC Bioinformatics. 2007 Sep 19;8:350. doi: 10.1186/1471-2105-8-350. BMC Bioinformatics. 2007. PMID: 17880708 Free PMC article.
-
Proof of concept for microarray-based detection of DNA-binding oncogenes in cell extracts.Nucleic Acids Res. 2005 May 12;33(8):e79. doi: 10.1093/nar/gni079. Nucleic Acids Res. 2005. PMID: 15891112 Free PMC article.
-
Eukaryotic transcription factor binding sites--modeling and integrative search methods.Bioinformatics. 2008 Jun 1;24(11):1325-31. doi: 10.1093/bioinformatics/btn198. Epub 2008 Apr 21. Bioinformatics. 2008. PMID: 18426806 Review.
-
DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase.Methods Enzymol. 2006;410:342-59. doi: 10.1016/S0076-6879(06)10016-6. Methods Enzymol. 2006. PMID: 16938559 Review.
Cited by
-
Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets.Nucleic Acids Res. 2013 Jul;41(12):5991-6004. doi: 10.1093/nar/gkt259. Epub 2013 Apr 26. Nucleic Acids Res. 2013. PMID: 23625967 Free PMC article.
-
Determination and inference of eukaryotic transcription factor sequence specificity.Cell. 2014 Sep 11;158(6):1431-1443. doi: 10.1016/j.cell.2014.08.009. Cell. 2014. PMID: 25215497 Free PMC article.
-
Structure of the transcriptional network controlling white-opaque switching in Candida albicans.Mol Microbiol. 2013 Oct;90(1):22-35. doi: 10.1111/mmi.12329. Epub 2013 Aug 25. Mol Microbiol. 2013. PMID: 23855748 Free PMC article.
-
Design of shortest double-stranded DNA sequences covering all k-mers with applications to protein-binding microarrays and synthetic enhancers.Bioinformatics. 2013 Jul 1;29(13):i71-9. doi: 10.1093/bioinformatics/btt230. Bioinformatics. 2013. PMID: 23813011 Free PMC article.
-
The static and dynamic structural heterogeneities of B-DNA: extending Calladine-Dickerson rules.Nucleic Acids Res. 2019 Dec 2;47(21):11090-11102. doi: 10.1093/nar/gkz905. Nucleic Acids Res. 2019. PMID: 31624840 Free PMC article.
References
-
- Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H. A genomic regulatory network for development. Science. 2002;295:1669–1678. doi: 10.1126/science.1069883. - DOI - PubMed
-
- Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804. doi: 10.1126/science.1075090. - DOI - PubMed
-
- Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431:99–104. doi: 10.1038/nature02800. - DOI - PMC - PubMed