Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;3(10):e374.
doi: 10.1371/journal.pmed.0030374.

Combining information from common type 2 diabetes risk polymorphisms improves disease prediction

Affiliations

Combining information from common type 2 diabetes risk polymorphisms improves disease prediction

Michael N Weedon et al. PLoS Med. 2006 Oct.

Abstract

Background: A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (approximately 20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed.

Methods and findings: Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles.

Conclusions: Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Power to Detect Interaction ORs for Combinations of SNPs
The power calculations assume a multiplicative mode of inheritance. Estimates of allele frequencies and expected effect size were determined from the literature; our study frequencies and effects sizes are consistent with these. α was set at 0.05. The power calculations were performed using Quanto [22].
Figure 2
Figure 2. The Distribution of Risk Alleles in the Controls and Cases
Controls are indicated by black bars, cases by white bars.
Figure 3
Figure 3. ORs and 95% CIs for Participants Carrying Increasing Numbers of Risk Alleles
The reference group is individuals with zero or one risk allele.
Figure 4
Figure 4. ROC for the Information Provided by the Glu23Lys, Pro12Ala, and rs7903146 Variants after Fitting a Logistic Regression Model
AUC = 0.58.

Similar articles

Cited by

References

    1. Edwards AO, Ritter R, 3rd, Abel KJ, Manning A, Panhuysen C, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–424. - PubMed
    1. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–421. - PubMed
    1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–389. - PMC - PubMed
    1. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. 2001;17:502–510. - PubMed
    1. Yang Q, Khoury MJ, Botto L, Friedman JM, Flanders WD. Improving the prediction of complex diseases by testing for multiple disease-susceptibility genes. Am J Hum Genet. 2003;72:636–649. - PMC - PubMed

Publication types

MeSH terms

Associated data