Noncore components of the fission yeast gamma-tubulin complex
- PMID: 17021256
- PMCID: PMC1679674
- DOI: 10.1091/mbc.e05-11-1009
Noncore components of the fission yeast gamma-tubulin complex
Abstract
Relatively little is known about the in vivo function of individual components of the eukaryotic gamma-tubulin complex (gamma-TuC). We identified three genes, gfh1+, mod21+, and mod22+, in a screen for fission yeast mutants affecting microtubule organization. gfh1+ is a previously characterized gamma-TuC protein weakly similar to human gamma-TuC subunit GCP4, whereas mod21+ is novel and shows weak similarity to human gamma-TuC subunit GCP5. We show that mod21p is a bona fide gamma-TuC protein and that, like gfh1Delta mutants, mod21Delta mutants are viable. We find that gfh1Delta and mod21Delta mutants have qualitatively normal microtubule nucleation from all types of microtubule-organizing centers (MTOCs) in vivo but quantitatively reduced nucleation from interphase MTOCs, and this is exacerbated by mutations in mod22+. Simultaneous deletion of gfh1p, mod21p, and alp16p, a third nonessential gamma-TuC protein, does not lead to additive defects, suggesting that all three proteins contribute to a single function. Coimmunoprecipitation experiments suggest that gfh1p and alp16p are codependent for association with a small "core" gamma-TuC, whereas mod21p is more peripherally associated, and that gfh1p and mod21p may form a subcomplex independently of the small gamma-TuC. Interestingly, sucrose gradient analysis suggests that the major form of the gamma-TuC in fission yeast may be a small complex. We propose that gfh1p, mod21p, and alp16 act as facultative "noncore" components of the fission yeast gamma-TuC and enhance its microtubule-nucleating ability.
Figures













References
-
- Bahler J., Wu J. Q., Longtine M. S., Shah N. G., McKenzie A., 3rd, Steever A. B., Wach A., Philippsen P., Pringle J. R. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast. 1998;14:943–951. - PubMed
-
- Basi G., Schmid E., Maundrell K. TATA box mutations in the Schizosaccharomyces pombenmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene. 1993;123:131–136. - PubMed
-
- Chikashige Y., Kurokawa R., Haraguchi T., Hiraoka Y. Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeast Schizosaccharomyces pombe. Genes Cells. 2004;9:671–684. - PubMed
-
- Cormack B. P., Valdivia R. H., Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) Gene. 1996;173:33–38. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases