Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug:14 Suppl 5:242S-249S.
doi: 10.1038/oby.2006.317.

Adipose tissue as an endocrine organ

Affiliations
Free article
Review

Adipose tissue as an endocrine organ

Rexford S Ahima. Obesity (Silver Spring). 2006 Aug.
Free article

Abstract

Adipose tissue plays a critical role in energy homeostasis, not only in storing triglycerides, but also responding to nutrient, neural, and hormonal signals and secreting adipokines that control feeding, thermogenesis, immunity, and neuroendocrine function. A rise in leptin signals satiety to the brain through receptors in hypothalamic and brainstem neurons. Leptin activates tyrosine kinase, Janus kinase 2, and signal transducer and activator of transcription 3, leading to increased levels of anorexigenic peptides, e.g., alpha-melanocyte stimulating hormone and cocaine- and amphetamine-regulated transcript, and inhibition of orexigenic peptides, e.g., neuropeptide Y and agouti-related peptide. Obesity is characterized by hyperleptinemia and hypothalamic leptin resistance, partly caused by induction of suppressor of cytokine signaling-3. Leptin falls rapidly during fasting and potently stimulates appetite, reduces thermogenesis, and mediates the inhibition of thyroid and reproductive hormones and activation of the hypothalamic-pituitary-adrenal axis. These actions are integrated by the paraventicular hypothalamic nucleus. Leptin also decreases glucose and stimulates lipolysis through central and peripheral pathways involving AMP-activated protein kinase (AMPK). Adiponectin is secreted exclusively by adipocytes and has been linked to glucose, lipid, and cardiovascular regulation. Obesity, diabetes, and atherosclerosis have been associated with reduced adiponectin levels, whereas adiponectin treatment reverses these abnormalities partly through activation of AMPK in liver and muscle. Administration of adiponectin in the brain recapitulates the peripheral actions to increase fatty acid oxidation and insulin sensitivity and reduce glucose. Although putative adiponectin receptors are widespread in peripheral organs and brain, it is uncertain whether adiponectin acts exclusively through these targets. As with leptin, adiponectin requires the central melanocortin pathway. Furthermore, adiponectin stimulates fatty acid oxidation and reduces glucose and lipids, at least in part, by activating AMPK in muscle and liver.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources