Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;98(2):92-8.
doi: 10.1038/sj.hdy.6800907. Epub 2006 Oct 4.

Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae)

Affiliations

Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae)

R D Noyes et al. Heredity (Edinb). 2007 Feb.

Abstract

The inheritance of asexual seed development (apomixis) in Erigeron annuus (Asteraceae) was evaluated in a triploid (2n=3x=27) population resulting from a cross between an apomictic tetraploid (2n=4x=36) pollen parent and a sexual diploid (2n=2x=18) seed parent. Diplospory (unreduced female gametophyte formation) and autonomous development (embryo and endosperm together) segregated independently in the population yielding four distinct phenotype classes: (1) apomictic plants combining diplospory and autonomous development, (2) diplosporous plants lacking autonomous development, (3) meiotic plants with autonomous (though abortive) development and (4) meiotic plants lacking autonomous development. Each class was represented by approximately one-quarter of the population (n=117), thus corresponding to a two-factor genetic model with no linkage (chi(2)=2.59, P=0.11). Observations demonstrate that autonomous embryo and endosperm development (jointly) may occur in either reduced or unreduced egg cells. The cosegregation of the traits is attributed to tight linkage or pleiotropy. The data are consistent with the hypothesis that autonomous development in E. annuus is regulated by a single fertilization factor, F, which initiates development of both the embryo and the endosperm in the absence of fertilization.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources