Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;33(9):3369-82.
doi: 10.1118/1.2241997.

Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans

Affiliations

Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans

W Ansbacher. Med Phys. 2006 Sep.

Abstract

A new method for rapid evaluation of intensity modulated radiation therapy (IMRT) plans has been developed, using portal images for reconstruction of the dose delivered to a virtual three-dimensional (3D) phantom. This technique can replace an array of less complete but more time-consuming measurements. A reference dose calculation is first created by transferring an IMRT plan to a cylindrical phantom, retaining the treatment gantry angles. The isocenter of the fields is placed on or near the phantom axis. This geometry preserves the relative locations of high and low dose regions and has the required symmetry for the dose reconstruction. An electronic portal image (EPI) is acquired for each field, representing the dose in the midplane of a virtual phantom. The image is convolved with a kernel to correct for the lack of scatter, replicating the effect of the cylindrical phantom surrounding the dose plane. This avoids the need to calculate fluence. Images are calibrated to a reference field that delivers a known dose to the isocenter of this phantom. The 3D dose matrix is reconstructed by attenuation and divergence corrections and summed to create a dose matrix (PI-dose) on the same grid spacing as the reference calculation. Comparison of the two distributions is performed with a gradient-weighted 3D dose difference based on dose and position tolerances. Because of its inherent simplicity, the technique is optimally suited for detecting clinically significant variances from a planned dose distribution, rather than for use in the validation of IMRT algorithms. An analysis of differences between PI-dose and calculation, delta PI, compared to differences between conventional quality assurance (QA) and calculation, delta CQ, was performed retrospectively for 20 clinical IMRT cases. PI-dose differences at the isocenter were in good agreement with ionization chamber differences (mean delta PI = -0.8%, standard deviation sigma = 1.5%, against delta CQ = 0.3%, sigma = 1.0%, respectively). PI-dose plane differences had significantly less variance than film plane differences (sigma = 1.1 and 2.1%, respectively). Twenty-two further cases were evaluated using 3D EPI-dosimetry alone. The mean difference delta over volumes with doses above 80% of the isocenter value was delta = -0.3%, sigma(delta) = 0.7%, and standard deviations of the distributions ranged from 1.0 to 2.0%. Verification time per plan, from initial calculation, delivery, dose reconstruction to evaluation, takes less than 1.5 h and is more than four times faster than conventional QA.

PubMed Disclaimer

Publication types

MeSH terms