Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec 25;265(36):22371-9.

Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice

Affiliations
  • PMID: 1702419
Free article

Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice

M M McGrane et al. J Biol Chem. .
Free article

Abstract

Transgenic mice were used to investigate sequences within the promoter of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the rat (EC 4.1.1.32) (PEPCK) which are involved in tissue-specific and developmental regulation of gene expression. Segments of the PEPCK promoter between -2000 and -109 were linked to the structural gene for bovine growth hormone (bGH) and introduced into the germ line of mice by microinjection. Bovine growth hormone mRNA was found in tissues that express the endogenous PEPCK gene, mainly in the liver but to a lesser extent in the kidney, adipose tissue, small intestine, and mammary gland. In the liver the chimeric PEPCK/bGH(460) gene was expressed in periportal cells, which is consistent with the zonation of endogenous PEPCK. The PEPCK/bGH gene was not transcribed in the livers of fetal mice until immediately before birth; at birth the concentration of bGH mRNA increased 200-fold. Our results indicate that the region of the PEPCK promoter from -460 to +73 base pairs contains regulatory sequences required for tissue-specific and developmental regulation of PEPCK gene expression. Mice transgenic for PEPCK/bGH(460) were not hyperglycemic or hyperinsulinemic in response to elevated bGH, as were transgenic mice with the MT/bGH gene. The number of insulin receptors in skeletal muscle was no different in mice transgenic for MT/bGH when compared with mice transgenic for PEPCK/bGH(460) and control animals. However, mRNA abundance for the insulin-sensitive glucose transporter in skeletal muscle was decreased in mice transgenic for the MT/bGH gene. The differences in glucose homeostasis noted with the two types of transgenic mice may be the result of the relative site of expression, the different developmental pattern, or hormonal regulation of expression of the bGH gene.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources