Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 15;266(2):770-9.

Identification and characterization of porins in Pseudomonas aeruginosa

Affiliations
  • PMID: 1702438
Free article

Identification and characterization of porins in Pseudomonas aeruginosa

H Nikaido et al. J Biol Chem. .
Free article

Abstract

Earlier studies have shown that the major porin species in Pseudomonas aeruginosa outer membrane is protein F (OprF), which produces channels wider than those produced by Escherichia coli porins. In contrast, Yoshihara and Nakae ((1989) J. Biol. Chem. 264, 6297-6301) reported that protein F has no pore-forming activity as measured by the flux of L-arabinose, and that the channels in P. aeruginosa outer membrane, being produced by proteins C, "D," and "E," are much narrower than E. coli porin channels. In this study, we followed the protein purification scheme of Yoshihara and Nakae as closely as possible, and found that protein F had a specific activity for pore formation similar to that of proteins D1, D2, and E2. Furthermore, proteoliposome reconstitution assays showed conclusively that the channels formed by protein F, as well as by unfractionated outer membranes, allowed the diffusion of a tetrasaccharide, stachyose, at a significant rate, indicating that these channels are much larger than E. coli porin channels. It appears likely that in the study of Yoshihara and Nakae protein F was inadvertently inactivated during purification. We further suggest a hypothesis that resolves the apparent conflict between the presence of large diameter channels and the low permeability of the outer membrane in P. aeruginosa.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources