Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;6(6):1750-7.
doi: 10.1166/jnn.2006.223.

Single supramolecule spectroscopy of natural and alkaline-treated chlorosomes from green sulfur photosynthetic bacteria

Affiliations

Single supramolecule spectroscopy of natural and alkaline-treated chlorosomes from green sulfur photosynthetic bacteria

Yoshitaka Saga et al. J Nanosci Nanotechnol. 2006 Jun.

Abstract

Fluorescence emission properties of intact and alkaline-treated chlorosomes containing bacteriochlorophyll(BChl)-c, d, and e, which were isolated from four species of green sulfur photosynthetic bacteria, were successfully studied at the single-unit level using a total internal reflection fluorescence microscope. Single intact chlorosomes containing BChl-c from Chlorobium (Chl.) tepidum exhibited heterogeneous emission bands of BChl-c self-aggregates. In contrast, fluorescence spectra of chlorosomal BChl self-aggregates in single intact chlorosomes from the other three Chlorobium species were less heterogeneous than those from Chi. tepidum. Removal of energy-accepting BChl-a/protein complexes called baseplates from the intact chlorosomes by treatments with alkaline media hardly changed spectral shapes of BChl aggregates and their peak distributions at the single-chlorosome level. The similarity of spectral properties at the single-unit level between intact and alkaline-treated chlorosomes of four Chlorobium species clearly indicated that the removal of base-plates from intact chlorosomes by the alkaline-treatment did not affect BChl self-aggregates inside single chlorosomes.

PubMed Disclaimer

Publication types

MeSH terms