Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;6(7):2191-5.
doi: 10.1166/jnn.2006.368.

Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix

Affiliations

Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix

Suprakas Sinha Ray et al. J Nanosci Nanotechnol. 2006 Jul.

Abstract

This communication describes the preparation, characterization and properties of biodegradable poly(butylene succinate) (PBS)/multi-walled carbon nanotubes (MWCNTs) nanocomposite. Nanocomposite was prepared by melt-blending in a batch mixer and the amount of MWCNTs loading was 3 wt%. State of dispersion-distribution of the MWCNTs in the PBS matrix was examined by scanning and transmission electron microscopic observations that revealed homogeneous distribution of stacked MWCNTs in PBS matrix. The investigation of the thermomechanical behavior was performed by dynamic mechanical thermal analysis. Results demonstrated substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.64 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 88% in the value of the elastic modulus. The tensile modulus and thermal stability of PBS were moderately improved after nanocomposite preparation with 3 wt% of MWCNTs, while electrical conductivity of neat PBS dramatically increased after nanocomposite formation. For example, the in plane conductivity increased from 5.8 x 10(-9) S/cm for neat PBS to 4.4 x 10(-3) for nanocomposite, an increase of 10(6) fold in value of the electrical conductivity.

PubMed Disclaimer

Publication types