Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug 4;8(3):E501-7.
doi: 10.1208/aapsj080359.

Effects of protein aggregates: an immunologic perspective

Affiliations
Review

Effects of protein aggregates: an immunologic perspective

Amy S Rosenberg. AAPS J. .

Abstract

The capacity of protein aggregates to enhance immune responses to the monomeric form of the protein has been known for over a half-century. Despite the clear connection between protein aggregates and antibody mediated adverse events in treatment with early therapeutic protein products such as intravenous immune globulin (IVIG) and human growth hormone, surprisingly little is known about the nature of the aggregate species responsible for such effects. This review focuses on a framework for understanding how aggregate species potentially interact with the immune system to enhance immune responses, garnered from basic immunologic research. Thus, protein antigens presented in a highly arrayed structure, such as might be found in large nondenatured aggregate species, are highly potent in inducing antibody responses even in the absence of T-cell help. Their potency may relate to the ability of multivalent protein species to extensively cross-link B-cell receptor, which (1) activates B cells via Bt kinases to proliferate, and (2) targets protein to class II major histocompatibility complex (MHC)-loading compartments, efficiently eliciting T-cell help for antibody responses. The review further focuses on protein aggregates as they affect an immunogenicity risk assessment, the use of animal models and studies in uncovering effects of protein aggregates, and changes in product manufacture and packaging that may affect generation of protein aggregates.

PubMed Disclaimer

References

    1. Dintzis R, Okajima M, Middleton M, Greene G, Dintzis H. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J Immunol. 1989;143:1239–1244. - PubMed
    1. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176:154–170. doi: 10.1034/j.1600-065X.2000.00607.x. - DOI - PubMed
    1. Bachmann M, Zinkernagel R. Neutralizing antiviral B-cell responses. Annu Rev Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. - DOI - PubMed
    1. Fluckiger AC, Li Z, Kato RM, et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998;17:1973–1985. doi: 10.1093/emboj/17.7.1973. - DOI - PMC - PubMed
    1. Ito H-O, Nakashima T, So T, Hirata M, Inoue M. Immunodominance of conformation-dependent B-cell epitopes of protein antigens. Biochem Biophys Res Commun. 2003;308:770–776. doi: 10.1016/S0006-291X(03)01466-9. - DOI - PubMed