Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;8(4):435-50.
doi: 10.1385/NMM:8:4:435.

Cerebral palsy

Affiliations
Review

Cerebral palsy

Michael V Johnston et al. Neuromolecular Med. 2006.

Abstract

Cerebral palsy (CP) is a group of disorders of movement and posture resulting from nonprogressive disturbances of the fetal or neonatal brain. More than 80% of cases of CP in term infants originate in the prenatal period; in premature infants, both prenatal or postnatal causes contribute. The most prevalent pathological lesion seen in CP is periventricular white matter injury (PWMI) resulting from vulnerability of the immature oligodendrocytes (pre-OLs) before 32 wk of gestation. PWMI is responsible for the spastic diplegia form of CP and a spectrum of cognitive and behavioral disorders. Oxidative stress and excitotoxicity resulting from excessive stimulation of ionotropic glutamate receptors on preOLs are the most prominent molecular mechanisms for PWMI. Asphyxia around the time of birth in term infants accounts for less than 15% of CP in developed countries but the incidence is higher in underdeveloped areas. Asphyxia causes a different pattern of brain injury and CP than is seen after preterm injuries. This type of CP is associated with the clinical syndrome of hypoxic-ischemic encephalopathy shortly after the insult, and the cortex, basal ganglia, and brainstem are selectively vulnerable to injury. Experimental models indicate that neurons in the neonatal brain are more likely to die by delayed apoptosis extending over days to weeks than those in the adult brain. Neurons die by glutamate-mediated excitotoxicity involving downstream caspase-dependent and caspase-independent cell death pathways. Recent reports indicate that males and females preferentially utilize different pathways. Clinical trials indicate that mild hypothermia reduces death or disability in term infants following asphyxia and basic research suggests that this approach might be combined with pharmacological strategies in the future.

PubMed Disclaimer

References

    1. Neuroreport. 1997 Oct 20;8(15):3359-62 - PubMed
    1. Dev Med Child Neurol. 2005 Aug;47(8):571-6 - PubMed
    1. J Pediatr. 1997 Aug;131(2):240-5 - PubMed
    1. Am J Obstet Gynecol. 1995 Mar;172(3):795-800 - PubMed
    1. J Biol Chem. 2006 Mar 31;281(13):8788-95 - PubMed

MeSH terms

Substances