Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 7;125(13):133504.
doi: 10.1063/1.2210480.

Local angular momentum-local impact parameter analysis: derivation and properties of the fundamental identity, with applications to the F+H2, H+D2, and Cl+HCl chemical reactions

Affiliations

Local angular momentum-local impact parameter analysis: derivation and properties of the fundamental identity, with applications to the F+H2, H+D2, and Cl+HCl chemical reactions

P D D Monks et al. J Chem Phys. .

Abstract

The technique of local angular momentum-local impact parameter (LAM-LIP) analysis has recently been shown to provide valuable dynamical information on the angular scattering of chemical reactions under semiclassical conditions. The LAM-LIP technique exploits a nearside-farside (NF) decomposition of the scattering amplitude, which is assumed to be a Legendre partial wave series. In this paper, we derive the "fundamental NF LAM identity," which relates the full LAM to the NF LAMs (there is a similar identity for the LIP case). Two derivations are presented. The first uses complex variable techniques, while the second exploits an analogy between the motion of the scattering amplitude in the Argand plane with changing angle and the classical mechanical motion of a particle in a plane with changing time. Alternative forms of the fundamental LAM-LIP identity are described, one of which gives rise to a CLAM-CLIP plot, where CLAM denotes (Cross section) x LAM and CLIP denotes (Cross section) x LIP. Applications of the NF LAM theory, together with CLAM plots, are reported for state-to-state transitions of the benchmark reactions F+H2-->FH+H, H+D2-->HD+D, and Cl+HCl-->ClH+Cl, using as input both numerical and parametrized scattering matrix elements. We use the fundamental LAM identity to explain the important empirical observation that a NF cross section analysis and a NF LAM analysis provide consistent (and complementary) information on the dynamics of chemical reactions.

PubMed Disclaimer

LinkOut - more resources