Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 1;80(3):554-64.
doi: 10.1002/jbm.a.30955.

Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography

Affiliations

Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography

Paulo Tambasco de Oliveira et al. J Biomed Mater Res A. .

Abstract

The surface characteristics of biomaterials can influence protein adsorption, cellular functions, and ultimately tissue formation. Controlled chemical oxidation of titanium-based surfaces with a mixture of H(2)SO(4)/H(2)O(2) creates a nanopatterned surface that has been shown to affect early osteogenic events. The objective of this study was to evaluate the effect over time of this nanopattern on various key parameters of osteogenesis, and determine whether these effects ultimately translate into more mineralized matrix production. Osteogenic cells were obtained by enzymatic digestion of newborn rat calvaria and grown on treated and untreated titanium discs for periods of up to 14 days. Alkaline phosphatase activity peaked earlier and cell number was higher as of day 7 on the nanopatterned discs. Immunofluorescence showed that the treated surface favored early bone sialoprotein and osteopontin secretion, and fibronectin accumulation. Alizarin red staining revealed that, at days 10 and 14, there were significantly more mineralized nodules on treated than on untreated discs. These results demonstrate that simple chemical treatment of titanium with H(2)SO(4)/H(2)O(2) accelerates the in vitro osteogenic potential of calvaria-derived cells. They also suggest that this treatment may represent an advantageous approach for producing "intelligent surfaces" that stimulate bone formation and enhance bone-implant contact.

PubMed Disclaimer

Publication types

LinkOut - more resources