Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;40(2):498-505.
doi: 10.1016/j.bone.2006.08.012. Epub 2006 Oct 10.

Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties

Affiliations

Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties

Steven M Tommasini et al. Bone. 2007 Feb.

Abstract

Understanding how growth influences adult bone morphology and tissue quality should provide important insight into why females show a greater incidence of stress fractures early in life and fragility fractures later in life compared to males. The objective of this study was to test whether females acquire similar tissue-level mechanical properties as males by the time peak bone properties are established. Standardized beams of bone were machined from the tibial diaphyses of 14 young, adult females ranging in age from 22 to 46 years. Data for males (n=17, age=17-46 years) were taken from a prior study. Measures of tissue-level mechanical properties, including stiffness, strength, ductility, toughness, and damageability, were compared between sexes using t-tests. The relationship between cross-sectional morphology and tissue-level mechanical properties was also examined. Males and females showed nearly identical tissue-level mechanical properties. Both sexes also showed similar age-related degradation of mechanical properties and a similar relationship between cross-sectional morphology and tissue quality. However, for all body sizes, female tibiae were smaller relative to body size (i.e., less robust) compared to males. The results indicated that sex-specific growth patterns affected transverse bone size, but did not affect tissue-level mechanical properties. This, combined with the observation that young, adult female long bones are undersized relative to body size, suggests that adult females would be expected to accumulate more damage under intense loading compared to males. This may be a contributing factor to the greater incidence of stress fractures observed for female military recruits.

PubMed Disclaimer

Publication types

LinkOut - more resources