Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;11(12):2267-76.
doi: 10.1007/s10495-006-0198-2.

Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression

Affiliations

Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression

Sugata Manna et al. Apoptosis. 2006 Dec.

Abstract

The aim of this study was to understand the mode of action of tea polyphenol epigallocatechin gallate (EGCG) in vivo. Swiss albino mice were treated i.p. with EGCG at two different doses i.e. 12-mg/kg body weight and 15-mg/kg body weight, for 7 days prior to inoculation of Sarcoma180 (S180) cells and continued for another 7 days. The growth of the S180, harvested 7 days after inoculation, was significantly reduced due to treatment with EGCG. The flowcytometric analysis of S180 cells, showed significant increase in apoptosis and reduction in the number of cells in G2/M phase of cell cycle due to treatment with EGCG. The induction of apoptosis has also been confirmed by the TUNEL and DNA fragmentation assays. Both RT-PCR and Western blot analysis showed significant up-regulation of p53 and bax, and down-regulation of bcl-2 and c-myc due to EGCG treatment. No changes in the expression pattern of p21, p27, bcl-xl, mdm2 and cyclin D1 were seen. Interestingly, there was significant down-regulation of spliceosomal uridylic acid rich small nuclear RNAs (UsnRNAs) U1B and U4-U6 due to EGCG treatment. This indicates that these UsnRNAs may be involved in the apoptosis process. Taken together, our study suggests that in vivo EGCG could induce apoptosis in S180 cells through alteration in G2/M phase of the cell cycle by up-regulation of p53, bax and down-regulation of c-myc, bcl-2 and U1B, U4-U6 UsnRNAs.

PubMed Disclaimer

Publication types

MeSH terms