Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb:61 Suppl A:14-6.

Bacteriology of diabetic foot lesions

Affiliations
  • PMID: 17042222

Bacteriology of diabetic foot lesions

R Yoga et al. Med J Malaysia. 2006 Feb.

Abstract

Infection plays a pivotal role in enhancing a diabetic foot at risk toward amputation. Effective antibiotic therapy against the offending pathogens is an important component of treatment of diabetic foot infections. Recognition of the pathogen is always difficult as the representative deep tissue sample for culture is surrounded by ulcer surface harbouring colonies of organisms frequently labelled as skin commensals. The emergent of resistant strains represents a compounding problem standing against efforts to prevent amputation. This study was undertaken to identify the pathogens associated with diabetic foot infection in terms of their frequency and sensitivity against certain commonly used antibiotics. Forty-four consecutive patients with open diabetic foot infections had wound swab taken for culture and sensitivity testing. Cultures positive were observed in 89% of the cases with Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeroginosa encountered in 20%, 14% and 14% of cases respectively. Mixed growths were isolated in 6% of cultures. All Staphylcoccus aureus isolates were resistant to Penicillin but 80% were sensitive to Erythromycin and Co-trimoxazole. Klebsiella pneumoniae isolates were sensitive to Methicillin and Gentamycin in 80% and 60% of cases respectively, and resistant to Ampicillin and Ceftazidime in 83% and 50% respectively. All Pseudomonas aeroginosa isolates were sensitive to Amikacin and Ciprofloxacin but 50% were resistant to Gentamycin. There was no single antibiotic possessing good coverage for all common organisms isolated from diabetic foot lesions. Staphylococcus aureus remains the predominant cause of diabetic foot infections followed by Klebsiela pneumonia and Pseudomonas aeroginosa. Most infections are monomicrobial. The emergence of multiresistant organisms is a worrying feature in diabetic foot infections.

PubMed Disclaimer

LinkOut - more resources