Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance
- PMID: 17043658
- DOI: 10.1038/sj.onc.1210008
Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance
Expression of concern in
-
Editorial Expression of Concern: Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance.Oncogene. 2025 Feb;44(5):337. doi: 10.1038/s41388-024-03257-0. Oncogene. 2025. PMID: 39668244 No abstract available.
Abstract
Hypoxia inducible factor-1 (HIF-1) is the major transcription factor and key regulator of adoptive responses to hypoxia. Although it usually promotes tumor cell survival under hypoxia, it has also been implied to trigger apoptosis. Although the impact of hypoxia has been extensively studied in many adult solid tumors, its role in most childhood tumors, for example, in rhabdomyosarcoma (RMS) or Ewing sarcoma (ES), has not yet been addressed. Here, we report that hypoxia protects A204 RMS and A673 ES cells against anticancer drug- or tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis and that Hif-1alpha plays a key role in conferring apoptosis resistance under hypoxia. Although a functional HIF-1 pathway and proapoptotic proteins such as p53 and Bcl-2/E1B 19 kDa interacting protein 3 were activated under hypoxia in both A204 RMS and A673 ES cells, these cells remained refractory to apoptosis. Concomitant analysis of antiapoptotic proteins revealed that hypoxia induced expression of Bcl-2 and inhibitor of apoptosis proteins (IAP)-2 as well as proteins associated with anaerobic metabolism such as the glucose transporter protein GLUT-1 and the glycolytic enzyme Aldolase A. Specific downregulation of Hif-1alpha by RNA interference significantly enhanced apoptosis under hypoxia by preventing the hypoxia-mediated increase in GLUT-1 expression without altering expression levels of the antiapoptotic proteins Bcl-2 or cIAP-2. Moreover, glucose deprivation-induced apoptosis of A204 RMS and A673 ES cells was inhibited under hypoxic conditions in a Hif-1alpha-dependent manner. As GLUT-1 was induced via Hif-1alpha under hypoxia in A204 RMS and A673 ES, these findings suggest that the Hif-1alpha-mediated increase in glucose uptake plays an important role in conferring apoptosis resistance. Thus, hypoxia-inducible genes may represent novel targets for therapeutic intervention in some pediatric tumors, which warrants further investigation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
