Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep-Oct;6(9-10):2651-63.
doi: 10.1166/jnn.2006.443.

Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery

Affiliations
Review

Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery

Mahesh D Chavanpatil et al. J Nanosci Nanotechnol. 2006 Sep-Oct.

Abstract

Polymeric nanoparticles have demonstrated enormous potential as cellular drug delivery vehicles. Nanoparticles improve drug's stability as well as its availability and retention at the target intracellular site of action. Therapeutic efficacy of nanoparticles can be further enhanced by conjugating specific ligands to nanoparticle surface. Ligand conjugation can also be used to favorably modify the intracellular disposition of nanoparticles. A number of ligands are available for this purpose; use of a specific ligand depends on the target cell, the material used for nanoparticle formulation, and the chemistry available for ligand-nanoparticle conjugation. Cellular drug delivery using nanoparticles is also affected by clearance through the reticuloendothelial system. In this paper, we review the recent progress on our understanding of physicochemical factors that affect the cellular uptake of nanoparticles and the different cellular processes that could be exploited to enhance nanoparticle uptake into cells.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources