Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;28(5):806-13.
doi: 10.1016/j.biomaterials.2006.09.033. Epub 2006 Oct 16.

Response of human endothelial cells to oxidative stress on Ti6Al4V alloy

Affiliations

Response of human endothelial cells to oxidative stress on Ti6Al4V alloy

Roman Tsaryk et al. Biomaterials. 2007 Feb.

Abstract

Titanium and its alloys are amongst the most frequently used materials in bone and dental implantology. The good biocompatibility of titanium(-alloys) is attributed to the formation of a titanium oxide layer on the implant surface. However, implant failures do occur and this appears to be due to titanium corrosion. Thus, cells participating in the wound healing processes around an implanted material, among them endothelial cells, might be subjected to reactive oxygen species (ROS) formed by electrochemical processes during titanium corrosion. Therefore, we studied the response of endothelial cells grown on Ti6Al4V alloy to H(2)O(2) and compared this with the response of endothelial cells grown on cell culture polystyrene (PS). We could show that although the cell number was the same on both surfaces, metabolic activity of endothelial cells grown on Ti6Al4V alloy was reduced compared to the cells on PS and further decreased following prototypic oxidative stress (H(2)O(2)-treatment). The analysis of H(2)O(2)-induced oxidative stress showed a higher ROS formation in endothelial cells on Ti6Al4V than on PS. This correlated with the depletion of reduced glutathione (GSH) in endothelial cells grown on Ti6Al4V surfaces and indicated permanent oxidative stress. Thus, endothelial cells in direct contact with Ti6Al4V showed signs of oxidative stress and higher impairment of cell vitality after an additional oxidative stress. However, the exact nature of the agent of oxidative stress generated from Ti6Al4V remains unclear and requires further investigation.

PubMed Disclaimer

Publication types

LinkOut - more resources