Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 15;304(2):300-6.
doi: 10.1016/j.jcis.2006.09.011. Epub 2006 Oct 17.

Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment

Affiliations

Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment

Deyi Wu et al. J Colloid Interface Sci. .

Abstract

To develop an effective technique for enhancing the removal efficiency of ammonium and phosphate at low concentrations without losing potential removal capacity, Na-ZFA (zeolite synthesized from fly ash) was converted into Ca-, Mg-, Al-, and Fe-ZFA by salt treatment and the simultaneous removal of ammonium and phosphate by ZFA saturated with different cations was investigated. It was shown that Al3+-ZFA had the highest removal efficiencies (80-98%) for ammonium, followed by Mg2+ (43-58%), Ca2+ (40-54%), Na+ (<20%), and Fe3+ (<1%). Both alkaline pH values (in the cases of Na+, Ca2+, Mg2+) and acidic pH value (in the case of Fe3+) inhibited the sequestration of ammonium. At low initial phosphate concentrations, the efficiency of phosphate removal by Al3+- and Fe3+-ZFA approached 100%, followed by Ca2+ (60-85%), Na+ (<25%), and Mg2+ (<5%). The difference in phosphate removal efficiency was explained by the adsorption mechanisms. It was concluded that ZFA could be used in simultaneous removal of NH4+ and phosphate at low concentrations with presaturation by an appropriate cation such as Al3+ through salt treatment.

PubMed Disclaimer

Publication types

LinkOut - more resources