Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;6(22):5941-52.
doi: 10.1002/pmic.200600096.

The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells

Affiliations

The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells

Eric Thouvenot et al. Proteomics. 2006 Nov.

Abstract

Choroid plexuses (CP) are involved in multiple functions related to their unique architecture and localization at the interface between the blood and cerebrospinal fluid compartments. These include the release by choroidal epithelial cells (CEC) of biologically active molecules, such as polypeptides, which are distributed globally to the brain. Here, we have used a proteomic approach to get an unbiased overview of the proteins that are secreted by primary cultures enriched in epithelial cells from mice CP. We identified a total of 43 proteins secreted through the classical vesicular pathway in CEC -conditioned medium. They include transport proteins, collagen subunits and other cell matrix proteins, proteases, protease inhibitors and neurotrophic factors. Treating CEC cultures with lipopolysaccharide, increased the secretion of four protein species and induced the release of two additional proteins. Our study also reveals a higher protein secretion capacity of CECs compared with other CP cells or cultured astrocytes. In conclusion, this study provides for the first time the characterization of the major proteins that are secreted by CECs. These proteins may play a critical role in neuronal growth, differentiation and function as well as in brain pathologies.

PubMed Disclaimer

Publication types

LinkOut - more resources