Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;70(2):221-7.
doi: 10.1016/j.bioelechem.2006.08.002. Epub 2006 Aug 26.

The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films

Affiliations

The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films

Elizabeth V Milsom et al. Bioelectrochemistry. 2007 May.

Abstract

Methemoglobin (bovine) is immobilized from aqueous phosphate buffer (pH 5.5) solution into thin porous TiO(2) (anatase) films at ITO electrode surfaces. Films of TiO(2) are produced in a deposition process employing 40 nm diameter TiO(2) nanoparticles suspended in dry methanol followed by calcination. The pore size in these films is sufficient for methemoglobin (ca. 6 nm diameter) to diffuse into the porous structure (over several hours) and to remain immobilized in electrochemically active form. The electrochemical reduction of methemoglobin immobilized in TiO(2) and immersed in aqueous phosphate buffer at pH 5.5 is observed in two steps with (i) a small quasi-reversible voltammetric response at -0.16 V vs. SCE (Process 1) and (ii) an irreversible reduction peak at ca. -0.5 V vs. SCE (Process 2). The irreversible response is recovered only after slow chemical re-oxidation of hemoglobin to methemoglobin. At sufficiently negative applied potential "electrochemical doping" of the TiO(2) host is observed to lead to a considerably enhanced reduction Process 1. TiO(2) can be temporarily switched from a non-conducting (irreversible electron transfer) into a conducting (reversible electron transfer) state.

PubMed Disclaimer

Publication types

LinkOut - more resources