Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 1;177(9):6122-8.
doi: 10.4049/jimmunol.177.9.6122.

Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN

Affiliations

Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN

Sara McBride et al. J Immunol. .

Abstract

The efficacy of tumor cell vaccination largely depends on the maturation and activation status of the dendritic cell. Here we investigated the ability of soluble and tumor cell-associated dsRNA to serve as an adjuvant in the induction of protective adaptive antitumor responses. Our data showed that cell-associated dsRNA, but not soluble dsRNA, enhanced both tumor-specific CD8(+) and CD4(+) T cell responses. The cell-associated dsRNA increased the clonal burst of tumor-specific CD8(+) T cells and endowed them with an enhanced capacity for expansion upon a secondary encounter with tumor Ags, even when the CD8(+) T cells were primed in the absence of CD4(+) T cell help. The adjuvant effect of cell-associated dsRNA was fully dependent on the expression of TLR3 by the APCs and their subsequent production of type I IFNs, as the adjuvant effect of cell-associated dsRNA was completely abrogated in mice deficient in TLR3 or type I IFN signaling. Importantly, treatment with dsRNA-associated tumor cells increased the number of tumor-infiltrating lymphocytes and enhanced the survival of tumor-bearing mice. The data from our studies suggest that using cell-associated dsRNA as a tumor vaccine adjuvant may be a suitable strategy for enhancing vaccine efficacy for tumor cell therapy in cancer patients.

PubMed Disclaimer

Publication types

MeSH terms