MicroRNAs in gene regulation: when the smallest governs it all
- PMID: 17057368
- PMCID: PMC1559927
- DOI: 10.1155/JBB/2006/69616
MicroRNAs in gene regulation: when the smallest governs it all
Abstract
Encoded by the genome of most eukaryotes examined so far, microRNAs (miRNAs) are small approximately 21-nucleotide (nt) noncoding RNAs (ncRNAs) derived from a biosynthetic cascade involving sequential processing steps executed by the ribonucleases (RNases) III Drosha and Dicer. Following their recent identification, miRNAs have rapidly taken the center stage as key regulators of gene expression. In this review, we will summarize our current knowledge of the miRNA biosynthetic pathway and its protein components, as well as the processes it regulates via miRNAs, which are known to exert a variety of biological functions in eukaryotes. Although the relative importance of miRNAs remains to be fully appreciated, deregulated protein expression resulting from either dysfunctional miRNA biogenesis or abnormal miRNA-based gene regulation may represent a key etiologic factor in several, as yet unidentified, diseases. Hence is our need to better understand the complexity of the basic mechanisms underlying miRNA biogenesis and function.
Figures
References
-
- Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends in Biotechnology. 1990;8(12):340–344. - PubMed
-
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. - PubMed
-
- Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes and Development. 1991;5(10):1813–1824. - PubMed
-
- Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–862. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
