Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr 26;26(19):2769-80.
doi: 10.1038/sj.onc.1210075. Epub 2006 Oct 23.

XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells

Affiliations

XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells

Y Saintigny et al. Oncogene. .

Abstract

Non-homologous end joining (NHEJ) and homologous recombination (HR) are two pathways that can compete or cooperate for DNA double-strand break (DSB) repair. NHEJ was previously shown to act throughout the cell cycle whereas HR is restricted to late S/G2. Paradoxically, we show here that defect in XRCC4 (NHEJ) leads to over-stimulation of HR when cells were irradiated in G1, not in G2. However, XRCC4 defect did not modify the strict cell cycle regulation for HR (i.e. in S/G2) as attested by (i) the formation of Rad51 foci in late S/G2 whatever the XRCC4 status, and (ii) the fact that neither Rad51 foci nor HR (gene conversion plus single-strand annealing) events induced by ionizing radiation were detected when cells were maintained blocked in G1. Finally, both gamma-H2AX analysis and pulse field gel electrophoresis showed that following irradiation in G1, some DSBs reached S/G2 in NHEJ-defective cells. Taken together, our results show that when cells are defective in G1/S arrest, DSB produced in G1 and left unrepaired by XRCC4 can be processed by HR but in late S/G2.

PubMed Disclaimer

Publication types

LinkOut - more resources