Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;78(8):887-96.
doi: 10.2175/106143005x72858.

Parameters governing permeate flux in an anaerobic membrane bioreactor treating low-strength municipal wastewaters: a literature review

Affiliations
Review

Parameters governing permeate flux in an anaerobic membrane bioreactor treating low-strength municipal wastewaters: a literature review

P R Bérubé et al. Water Environ Res. 2006 Aug.

Abstract

The objective of this review was to conduct a comprehensive literature survey to identify the parameters that govern the permeate flux in an anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. Based on the survey, research to date indicates that the optimal membrane system for an AnMBR consists of an organic, hydrophilic, and negatively charged membrane with a pore size of approximately 0.1 microm. The use of both external and submerged membrane configurations shows promise. The operating parameters that affect permeate flux in an external membrane system are transmembrane pressure (TMP) and cross-flow velocity. The operating parameters that affect permeate flux in a submerged membrane system are TMP, sparging intensity, and duration of the relaxation period. Both cross-flow velocity and sparging intensity impart a significant amount of shear force on the biomass in an AnMBR. High shear forces can reduce the microbial activity in an AnMBR. In addition, high shear forces can reduce the size of the biosolids in the mixed liquor and increase the release of soluble microbial products. In this respect, external and submerged membrane systems are expected to perform differently because the magnitude of the shear forces to which the biomass is exposed in an external membrane system is significantly greater than that in a submerged system. The size of the biosolid particles and concentration of soluble microbial products in the mixed liquor affect permeate flux. Higher concentrations of soluble microbial products may be present in the mixed liquor when an AnMBR is operated at relatively low operating temperatures. Aerobic polishing following anaerobic treatment can potentially significantly reduce the concentration of some components of the soluble microbial products in the mixed liquor. It is not possible to remove the foulant layer on an organic membrane with caustic cleaning alone. Acidic cleaning or acidic cleaning followed by caustic cleaning is required to remove the foulant layer. This suggests that both biological/organic and inorganic material contribute to membrane fouling.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources