Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan;57(1):32-40.

Diminished pulmonary lecithin synthesis in acidosis: experimental findings as related to the respiratory distress syndrome

  • PMID: 1706

Diminished pulmonary lecithin synthesis in acidosis: experimental findings as related to the respiratory distress syndrome

T A Merritt et al. Pediatrics. 1976 Jan.

Abstract

Lung slices from term fetal rats were incubated in vitro at various pH values and the rates of the two de novo pathways for lecithin biosynthesis were determined by measuring the conversion of either 14C-choline (pathway 1) or 14C-methionine (pathway 2) to the phospholipid. It was observed that the choline pathway, but not phosphatidylethanolamine methylation, is pH-sensitive with maximum rates occurring at pH levels between 7.3 and 7.5; significantly less activity was found at pH levels between 7.0 and 7.2 and at pH levels between 7.6 and 8.0. Adjustment of the pH from 7.0 to 7.4 in vitro simulating the clinical correction of acidosis by alkali infusion was found to increase the conversion of choline to lecithin to a rate approximating that observed at pH 7.4. Since lecithins are the principal phospholipid components of pulmonary surfactant, and since pathway 1 is predominantly responsible for lung lecithin synthesis, the demonstration of impaired production with reduced pH offers a biochemical explanation for the pathophysiological effects of acidosis in the respiratory distress syndrome. A comparison of pH effects on choline pathway rate with the pH profiles of pathway enzymes suggests that these effects are mediated by the catalysts of lecithin synthesis.

PubMed Disclaimer

Similar articles

Cited by